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B O U N D A R Y  L A Y E R S  I N  F R E E  C O N V E C T I O N  

V. V.  K u z n e t s o v  a n d  O. A. F r o l o v s k a y a  UDC 532.516.5:532.526 

The problem of free convection and mass transfer near a vertical wall is studied for the cases 
where the motion is described by the classical Oberbeck-Boussinesq model and the model of 
microconvection. In both cases, boundary layers are developed at high Schmidt numbers. For- 
mulas for Nusselt (local and overall) numbers are obtained by solving the relevant problems for 
these layers. Initial asymptotic forms are also considered. 

I n t r o d u c t i o n .  We consider the problem of free convection in a viscous, incompressible fluid near a 
vertical wall (substrate) and transfer of an admixture in the case where the density of the solution depends 
oil the admixture  concentration. The fluid flow- that  arises in this case is called free or natural  convection. 
Free convection has been much studied by various methods, including the boundary-layer method (see, e.g., 
[1-5]). In the present paper, we consider the case where the kinematic viscosity ~ and the diffusivity D satisfy 
the condition D << 9. At high Schmidt numbers Sc = ~,/D, a dynamic-diffusion layer with thickness of the 
order of (Re 2 Sc)-U4 can be distinguished in the flow region. Outside this layer, the admixture concentration 
differs only slightly from the average, and the flow regime depends on the Reynolds number Re as follows. 
For Re << Sc 1/2, the flow corresponds to the Stokes approximation, and for Re ~ Scl/2~ the flow is described 
by steady Navier-Stokes equations. For Re >> Sc V2, there is also a purely dynamic layer with thickness of 
the order of (Sc/Re2) 1/4, which is adjacent to the dynamic-diffusion layer at the inner edge and the state of 

rest at the outer edge. 
Self-similar solntions are used to obtain formulas for Nusselt numbers Nu (local and overall) that  are 

similar to the formulas obtained in [3] from an analysis of the self-similar solutions for an ordinary dynamic- 
diffusion boundary layer [2]. These formulas are also applicable to flows at moderate and low Reynolds 
numbers. In addition, the proposed approach allows one to distinguish a dynamic-diffusion boundary layer in 
the case of microconvection, where the Oberbeck-Boussinesq model is inapplicable. The model of microcon- 
vection that  can be used instead was developed by Pukhnachev [6]. A similar approach was used by Perera 
and Sekerka [7] to s tudy concentration convection. A comparative analysis of the velocity and concentration 
(temperature) fields calculated using both  models was performed by Goncharova [8, 9]. The  possibility of 
distinguishing a dynamic-diffusion boundary layer in microconvection (an ordinary boundary layer is not 
distinguished) allows one to compare integral flow characteristics, such as Nusselt numbers, for these models. 
For both models, initial asymptotic forms of the process are considered and formulas for Nu are obtained. 

The  method proposed can also be applied in the case of free convection near a vertical wall due to 

a nonuniform distribution of the fluid temperature.  In this case, the Prandt l  number is used instead of the 
Schmidt number, and concentration is replaced by temperature.  However, situations in which the thermal 
conductivity is much less than the viscosity are rare. At the same time, the case where D <~ p is typical. 
For example~ for growth of thin films from a solution-melt  of semiconducting materials, ~ is of the order of 
10-2-10 -3 cm2/sec and D ~ 10 -5 cm2/sec. 

Lavrent 'ev Insti tute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 3, pp. 92-100, May-  
June, 2000. Original article submitted March 4, 1998; revision submitted July 26, 1999. 

0021-8944/00/4103-0461 $25.00 �9 2000 Kluwer Academic/Plenum Publishers 461 



We consider the  problem of determining the u and v components  of the velocity vector v, the concen- 

t ra t ion  c, and the difference between the pressure and the  hydrostat ic  pressure p in the region y > 0 bounded 

by an infinite vertical wall {y = 0}. The  gravity force is directed along the O x  axis. In the (x, y) coordinates, 

the acceleration of gravity has the form g = ( - g ,  0). We assume tha t  the density of the melt  p is a linear 

function of the concentration: p = p0[1 + ~ ( c -  co)]. Here Po and co are the average density and concentration 
of the solution and /3  = ( l /p0)  d p / d c  = const (for definiteness, we set ~ > 0). Then,  the equations of motion 

in the  Boussinesq approximat ion  have the form 

O-'-t + u "~x + v Oy Po Ox _ + Oy 2 ] 
I g ~  ~ C l Co ~ ~ (1) 

O2v'  
o-7 + + v = po oy [ o V  ] '  

(2) 

Ou Ov  
0--; + ~ = 0: (3) 

Oc ac 
+ u 7xx + v . (4 )  

At the initial moment ,  we assume equilibrium 

u t=0  = v t=0  = 0, c t=0  = co, (5 )  

and the boundary  conditions have the form 

u y=o = v y=o = O, c y=o = c,, c y _ ~  co, (6) 

where c, = const > 0. 
The  microconvection problem is to find the concentrat ion c, the modified velocity w = v + j 3 D V c ,  and 

the modified pressure q = p / p ,  - g x  + ~ ( u  - D ) D A c ,  where p = p,(1 - ~ ( c -  c0)) -1, that  satisfy the following 

ini t ia l-boundary-value problem: 

O w  
0t  + w V ~  - Z D ( V c V ~  - V w V c )  + Z2D2(/XcVc - V lVc f ' /2 )  

= (1 - / J ( ~  - c o ) ) ( - 9 ' q  + ~ , ~ )  + ~3(c - co )g ,  (7) 

c9c 
d i v w  = 0, ~ + w V c  - ~D]Vcl 2 = D(1 - ~(c - co))Ac; 

w l  t=o = w 2  t=o = O, c ~=o = co; (8)  

Oc 
w l  ~=0 = 0,  w2  y=0 = ~ D  ~ ~ = o '  c y=0  = c . ,  c ~ c 0 .  (9)  

Here wl and w2 are the components  of the vector w. 
B o u n d a r y  L a y e r s  in S t e a d y  F low.  Boundary  conditions (6) and (9) in the problems considered 

above do not depend on time. Therefore, after decay of the initial per turbat ions ,  the process becomes steady, 

so tha t  one can seek t ime-independent  solutions of problems (1)-(6) and (7)-(8) ignoring conditions (5) and 

(8). These solutions describe the longest and most impor tan t  par t  of the entire process. 

~Ve note tha t  sys tem (1)-(4) has a solution of the form 

u = v = 0, p = 0, c = co, (10) 

tha t  satisfies all boundary  conditions (6), except for the constraint on the concentrat ion at y = 0. To resolve 

this discrepancy, we determine the asymptot ic  forms of this sys tem in the limit Sc --* cx~, t reat ing (10) as 
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the external solution. We assume that the problem has a certain length scale l, e.g., the dimension of the 
substrate.  We define the velocity scale by the formula g = x/g~l(co - c.). It is known [1] that  problem (1)- 
(6) depends on two dimensionless similarity criteria: the Schmidt number defined above and the Reynolds 
number 

Re = U l / u =  [g3(co - c.)la/u2] I/s (11) 

Below, we assume that 

Re 2 S c ~ 0 0  as Sc---*oc. (12) 

which is equivalent to small uD. Within the framework of this assumption, no restrictions are imposed on 
the Reynolds numbers. 

Let 

x ~ l, y ~ / ( S o  Re2) - t /a ,  u ,.-, USe -1/2, v ,.~ U(Sc3Re2) -1/4, 

Then, in Eq. 

p ,,, poU2(ScReS) -1/2, c ,-,, c.. 

(1) we have the following orders of magnitude: 

2 U 2 OU O'[t UZ S o - l :  Z Op - -  (Sc R e 2 ) - l / 2 :  

In Eq. (2), we have 

OSu uU 02 u uU U s 
Ox 2 ,-~ l--- ~- 8 c - 1 / 2 ;  /~ ~-~ --~-Re; g 3 ( c -  co) "- ~ .  Oy s 1 

Ov Ov U 2 
u 0"~" v 0"-'y "~ -7- (sc5 Re2)-1/4; 

10p U 2 
P0 0g ~ -7- (SeReS)-1/4; 

OZv ...'uU OSv uU 
UOx------~. -~-~-(Sc3Re2)-1/4; u - - , - -  / -TRe(ScRe2)  -1/4. Oy 2 

In the continuity equation (3). both terms are obviously of the same order, and in the transport equation (4), 
we obtain the following orders of magnitude: 

Oc Oc Uc. Sc_1/2; D Osc Dc. 02c Dc. 
U-~x, v Og "~ - - 7  ~ ~ ---fi-; D--og 2 ,., --lS (ScReS) 1/2. 

We divide Eq. (1) by US/l, Eq. (2) by US(ScRe2)-l/4/1, and Eq. (4) by c.USc-1/2/ l .  Passing to the limit 
Sc --+ oc and taking into account condition (12) and the definitions of Re and Sc, we obtain the following 
system of boundary-layer equations: 

02u 
u ~ = g~(c - co); (13) 

I Op 0% Ou Ov 
- .  - -  - -  + = 0 ;  ( 1 4 )  

Po Oy Oy s' Ox ~y 

Oc Oc 02c 
U ~x + V-~y = D (15) 

OyS " 

Equations of motion in this form have not been considered previously. The form of boundary conditions (6) 
is unchanged. Of the solutions of problem (13)-(15), (6), we consider only solutions that  have finite velocity 
away from the substrate: 

lim u(x ,y)  = uzc(x) < oc. (16) 
y--~oo 
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Here uoc(x) is defined in the process of solution of the problem. Problem (13)-(16), (6) describes the motion 
in a thin dynamic-diffusion layer with thickness of the order of/(Sc Re2) -U4, and outside the layer, c ~ co. In 
this layer, the buoyancy and viscous forces are of the same order, and the inertial forces and the longitudinal 
pressure gradient are negligible in comparison with them. In contrast to the case of a classical boundary 
layer [2], the external representation for velocity is determined from the solution of the problem and not 
from the matching condition. Obviously, the velocity-vector components and the concentration are obtained 
separately from the pressure, which is determined by integration of the first of Eqs. (14) over y from y to oe 
taking into account the continuity equation: 

§ 

Here p ~  (x) is the pressure at the outer edge of the boundary layer. 
Since, in the general case, u~(x )  # 0, the solution of problem (13)-(16), (6) cannot be matched 

with the external solution (10). To resolve this discrepancy, it is necessary to obtain one more asymptotic 
form of the problem that  should describe the motion in a region with asymptotic thickness greater than the 
boundary-layer thickness considered above. In the limit Sc --* ~c. the following three variants are possible: 

Sc/Re 2 --~ 0; (18a) 

Sc/Re 2 ~,, 1; (lSb) 

Sc/Re 2 -~ ee. 

Let condition (18a) be satisfied. We seek the asymptotic form of system (1)-(4), assuming that  

x ~ l, y ,-., l(Sc/Re2) 1/~, u ,.~ USc -1/2, v ,,~ U(Sc Re2) -1/~, 

(18c) 

p ~ p0U2(Sc Re2) -1/2, c = co. 

Comparison of the orders of magnitude of the quantities in system (1)-(4) shows that  Prandtl 's  hypothesis 
on the equality of the orders of magnitude of the viscous and inertial forces is valid. Denoting the velocity 
components by ul and vl, we obtain the system 

0'U[ 0Ul 02Ul. 
Ul ~ +Vl  ~ : /~ ay  2 . (19) 

0'U 1 ~721 op _ 0 ,  - -  + = 0 .  ( 2 0 )  

and, from the matching conditions, we have the boundary conditions 

ul y=o=U~ vl y=o=O' ul AO. (21) 

Problem (19)-(21) describes the motion in a purely dynamic, thin (c = const) boundary layer whose thickness 
is of the order of l(Sc/Re2) U4, i.e., asymptotically greater than the thickness of a dynamic-diffusion layer. 
The dynamic layer problem differs from the classical problem in that  the longitudinal velocity is specified at 
the inner rather than  at the outer edge. In this problem, the pressure can be considered zero for the following 
reasons. From the first of Eqs. (20), we find that  the pressure p is the same as the pressure at the outer edge 
of the boundary layer where p - 0 (the state of rest; the pressure is equal to hydrostatic pressure). Therefore, 
in this case, Por --- 0 in formula (17). 

Let condition (18b) be satisfied. We assume that  

x ~ l, y ~ l, u ~ USc -1/2, 
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p ~ p0U2(Sc Re2) -U2, 

v ~ USc -1/2, 

c---0. 

(22) 



Comparing the orders of magnitude and taking into account condition (18b), we see that the motion is 
described by steady Navier-Stokes equations of the form (1)-(3), in which the concentration is constant. The 
boundary  conditions have the form 

u y=0 = y=O = ,0. (23) 'uo  ( z ) ,  v 0, u y-o  

In this case, the velocity decays at finite distance from the rigid wall. 
Finally, we consider condition (18c). Finding an asymptotic form similar to (22), we see that,  in this 

case, the pressure gradient is of the same order as the viscous forces, and the inertial forces are negligible, 
i.e., the flow is described by Stokes's system with boundary conditions of the form (23). 

Thus, to determine the velocity, concentration, and pressure fields, one should first solve the problem 
for the dynamic-diffusion layer (without the equation for pressure) and calculate the external representation 
for the velocity u~o(x). After that,  using this representation as the boundary condition, it is necessary to 
solve the problem for the external asymptotic form (for the particular case), to determine poo(x), and, finally, 
to calculate the pressure in the dynamic-diffusion layer from formula (17). The problem for the dynamic- 
diffusion layer is of greatest interest, since, by solving it, one obtains the velocity and concentration fields 
near the rigid wall, which is the goal of calculations in most cases. 

Let us determine the asymptotic form in the microconvection problem (7)-(9) in the limit Sc --* oe. 
Assuming that  the viscous and buoyancy forces are of the same order and keeping terms of leading orders in 
system (7), we obtain the following boundary-layer equations for microconvection: 

02Wl Oq 02w,  O'wl Ow2 
~'(1 - ,3(c - co)) ~ = gi3(c - co), ~'g = " Og 2" ' Ox + ~ = O, 

(24) 
oc Oc ,00 ,2  o2c 

wl ~x  + w~'0--y9 - / 3 D  [ ~ y )  = D(1 - J(c  - co)) Oy ~ �9 

The  boundary conditions have the form 

= eD 0__c = wl = 0, 'w2 0y c c.,  

(25) 
~co,  w l - - - - ~ w ~ ( x )  < c<~, C y ~  Y ~  _ . 

where the function w ~ ( x )  is determined during the solution. 
Se l f -S imi l a r  So lu t ions .  M a s s - T r a n s f e r  F o r m u l a s .  We seek a solution of problem (13)-(16), (6) 

in the form u = cgW/Oy, v = -Or  and c = co + (co - c . )C(~) ,  where the streamfunction '6, has the form 

= 

\ 27v ~(~) '  ~ = \ 4uD x'/4" 

Then,  Eqs. (13)-(17) become 

�9 " = C, 

It follows from condition (6) that  

�9 (0) = ~ '(0)  = 0, 

C" = - ~ C ' .  (26) 

c ( 0 )  = - 1 ,  (27 )  

From condition (16), we find that  the external representation of the velocity must satisfy the conditions 

lim g2'(~) = Uc~ = const < ec, u ~ ( x )  = , / 4 g J ( c o L c . ) x  Uc~. (28) 

i 

~-o~ V 3 Sc 

Tile solutions of problem (26), (27) that  do not satisfy condition (28) are not considered since they 

have no physical meaning. 
To characterize the mass transfer between the growing film and the solution, we introduce the overall 

and local Nusselt numbers: 
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For the solutions of problem (26)-(28), the Nusselt numbers are given by 

Nu = (4/3)3/4C'(0)(Sc Re2) 1/4 ~ 0.670(Sc Re2) 1/4. 
(29) 

and C, we obtain the problem 

(1 - A C ) ~ "  = C, 

,~(o)  = - . ~ c ' ( o ) ,  

C~--:-~ 0, 

(1 - ~ c ) c "  = - , ~ ( c ' )  2 - ~ c ' ,  

�9 ' (o)  = o,  c ( o )  = - 1 ,  

�9 '~-:-~U~ < ~ ,  

(30) 

where A = fl(co - c,) is the Boussinesq parameter.  The formula for the external velocity w~(x) is similar to 

(28). 
Problem (30) was solved numerically, and the value of the parameter  ,~ was varied from 0 to 0.25 

[for )~ = 0, this problem coincides with (26)-(28)]. For each )~, the value of Nu was calculated. Numerical 
results are shown in Fig. 1. The  straight line is given by the equation ln H = 0.9901n& - 1.773 [H = 
(Nu(0) - N u ( ~ ) ) ( R e 2 S c ) - U 4 ] ,  and the points represent numerical values. Insignificant deviations of the 

numerical points from the straight line appear only at ~ ~> 0.15. The physical meaning of ~ as the relative 
deviation from the average density implies that  the case of not too large A is of the greatest importance. 
Thus, the dependence of the Nusselt number on A can be writ ten as 

Nu(~) = (0.670 - 0.169~~176 2 Sc) U4. (31) 

Formulas (29) and (31) coincide at ~ = 0, and dependence (31) is nearly linear for other values of ~. 
Let us determine the thickness of the dynamic-diffusion layer. In classical theory, boundary-layer 

thickness is evaluated using the so-called displacement thickness [2]. In our case, a characteristic feature of 
the boundary  layer is that  the concentration c inside the layer differs from the average value, and outside the 
layer, c ~ co. An analog of the displacement thickness 5 c is defined by the equality 
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Nu~ = (3/4)1/4C'(0)(Sc Re 2) 1/4 ~ 0.502(Sc Re2)  I/4. 

In this case, problem (26)-(28) was solved numerically. The Reynolds number is given by formula (11), and 
the local Reynolds number Rex is defined by formula (11) in which l is replaced by x. Formulas (29) are 
similar to those obtained in [3], where Nusselt number was derived as a function of the Grashof and Prandt l  
numbers. 

Problem (24), (25) admits self-similarity and, therefore, we seek its solution in the form wl = 0~/0y, 
w2 = -Or and c = co + (co - c.)C(~),  where the function u' has the same form as before. Then, for 



5;(co - c,) = f [co - c(~, y)] dy. 
0 

Calculations for the self-similar solutions yield 

5" ~ f [ - c ( ~ ) ]  d~ = c - (Re~ Sc)I/4 
0 

X 

(Re~ Sc)U4 d(A). 

of A. 
I n i t i a l  A s y m p t o t i c  F o r m s .  We consider the asymptotic form of problem (1)-(6) in the time interval 

[0, r] as r ~ 0. Then, at small times, the order of magnitude of the velocities is U0 = g/3(co - c,)wD/~,.  

Assuming that  x ~ l, y ~ 5o = v/-D-~, u ~ U0, v ~ 5oUo/l, p ~ po~Uo/l, and c ~ c,, we see that  the convective 
terms and the pressure gradient in Eq. (1) are negligible compared to the other terms, i.e., again it is necessary 
to adopt the assumption that the buoyancy and viscous forces are of the same order of magnitude. Next, in 
Eq. (2), the higher-order terms are (1/po)Op/Oy and ~c92v/c)y 2, and in Eq. (4), they are Oc/Ot and DO2c/Oy 2. 
Thus, we have the system of equations 

1 01) 02v Ou Ov 
- - ~ - - - - ~ - -  - - +  = 0 :  
Po Oy Oy 2' Ox ~ ' 

Oc _ 02c 
0--[ = 1) Oy 2 . 

The initial and boundary  conditions for c are given by 

C t=O ~ cO' C y=O ~ C,, Cy~r O. 

02U 
L, ~y2 -= g/3(c - co); (33) 

For the velocity components, we speci .fy the at tachment  condition 

u y=O = v y=O -- 0 (37) 

and the additional condition 
lim u ( t , x , y )  = u ~ ( t , x )  < ec, (38) 

y--*O~ 

where uoz(t, x)  is determined during the solution. Problem (33)-(38) describes the motion in the dynamic- 
diffusion layer at small times. The admixture concentration c is obtained from Eq. (35) and conditions (36). 
After determining the concentration, it is possible to find the velocity components and the pressure, and the 
t ime appears in the solution as a parameter.  

In addition to the asymptotic form considered above, we determine the asymptotic form in the mi- 
croconvection problem (7)-(9). Assuming that  the buoyancy and viscous forces are of the same order of 
magnitude and retaining high-order terms in system (7)-(9), we obtain the system 

( 1  - -  • ( C  - -  C0))Y 02Wl Oq _ 02u '  ") OWl Ow2 
oy 2 =g~(c-co), 7 y -  ~ @2-, Ox + ~ = o ,  

(39) 
Oc _ D / O C \  2 02c 

z [ ~ )  = D(1 - Z ( c -  co)) 
Ot Oy 2 
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(34) 

(35) 

(36) 

In the calculations, the functions d(A) and U~(A) were determined. They turned out to be nearly 
linear. The following formulas hold: 

X 
5c(x ) = (1.165 + 0.260A) (Re~Sc)W4' uoo(x) = (0.884 + 0.029A)4/~AXv 3Sc"  (32) 

It follows from (32) that the total convection rate, which is determined by Uoc, is almost independent 



with the conditions 

C t = 0  "~- CO, C y = 0  ~ C . ,  C ~co ,  
y--o~ (40) 

W 2  y = 0  OC wi y=0 = O, = ~D -~y y=O' y-~lim wl (t, x, g) = w ~  (t, x) < ~ .  

Problem (35), (36) represents the well-known problem [2] of the smoothing of an initial tempera ture  
jump, whose solution is given by 

q 

c = c o + ( c 0 - c . ) ~ ( V ) = C O + ( c 0 - c . )  - 1 + ~  e - a 2 d a  , ~?= 2v/_ ~ .  

0 

Next, we can seek the velocity components u and v in the form u = u(t, g) and v = 0, assuming that  at small 
times they do not depend on the longitudinal coordinate. If we set u(t, y) = 4DgB(CO - c.)t'it(rl)/U, from (33) 

q 

we obtain the equation ~t" = ~ or "5 ~ = f ~(a) da + A. The additional condition (38) implies that  itt ~ 0 as 

0 
r / ~ c~, and, hence, 

oo 

A = - / d(a) da 
0 

Taking into account (37), We obtain 

o r  

oG 

it' = - / ~( a ) da. 

oo 

u ( t , g ) =  4Dg~(co-c.)~ t~(~/), s = - / / ~ ( a )  dot d~,'. 

0 

From this, for the external representation for the velocity, we have 
OG 

uoo(t) = 4Dg/d(co~ - c . ) t [ ? ~ ,  U~ = - / / ~ ( a ) d a d w .  

0 

Thus, problem (33)-(38) is solved in quadratures. 
In problem (39), (40). we seek self-similar solutions in the form 

c(t,y) = co + (co - c.)5(r/), wl = wl( t ,y)  = 4Dg/~(co - c.) t~l(rl), 

For ~31 and ~, we then obtain the problem 

w2 - 0 .  

(41) 
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5c(t ) = 2(0.606 - 0.055A)v/-D~, u ~ ( t )  = (0.249 - O.117A)4gAt/Sc. (43) 

It follows from (31) and (42) that  in the steady regime and at small times, the mass-transfer rate 
(dimensionless) decreases as ,~ increases. This is due to various physical factors: an increase in the boundary-  
layer thickness during the stabilization process [see (32)] and a decrease in the convection rate at the beginning 

of the process [see (43)]. 

= - 1 ,  ,0, ,0. 

The  mass transfer is characterized only by the overall Nusselt number because there is no dependence 
on the x coordinate. A numerical solution of problem (41) yields the following formulas for the mass transfer, 
the layer thickness, and the velocity in microconvection: 

Nu(A) = ~ - 0"344A~ 2 v ~ ;  (42) 



Conclusions.  The problem of mass transfer and free convection near a vertical wall at high Schmidt 
numbers was considered. Integral flow characteristics for the Oberbeck-Boussinesq model and the micro- 
convection model were compared. For both models, asymptotic forms of the problems were derived for the 
steady flow regime and for small times. In the flow region, a dynamic-diffusion layer is distinguished, in which 
the buoyancy forces are significant. Outside the layer, the admixture concentration does not differ from the 
average. 

The structure of the velocity field depends on the Reynolds number. If Re is high, in the flow region 
there is a purely dynamic layer with greater asymptotic thickness, whose inner edge is adjacent to the dynamic- 
diffusion layer and whose outer edge neighbors the state of rest. For low Re, the Stokes approximation can 
be used outside the diffusion layer. 

For both convection models, we obtained formulas for Nusselt numbers as functions of the Reynolds 
number, the Schmidt number, and the Boussinesq parameter for both the steady regime and for small times. 
In the case of convection, these formulas coincide with the well-known formulas obtained previously under 
the assumption of intense motion at high Re. 
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